class leader: y2 = x3 + 21x + 47
Sr no. class members # points points
1 y2 = x3 + 21x + 47 114 (5,2) (5,37) (5,54) (5,89) (6,5) (6,44) (6,47) (6,86) (10,16) (10,23) (10,68) (10,75) (12,5) (12,44) (12,47) (12,86) (17,26) (17,65) (19,5) (19,44) (19,47) (19,86) (20,2) (20,37) (20,54) (20,89) (24,19) (24,33) (24,58) (24,72) (27,2) (27,37) (27,54) (27,89) (31,2) (31,37) (31,54) (31,89) (33,2) (33,37) (33,54) (33,89) (34,5) (34,44) (34,47) (34,86) (38,5) (38,44) (38,47) (38,86) (40,2) (40,37) (40,54) (40,89) (45,5) (45,44) (45,47) (45,86) (47,5) (47,44) (47,47) (47,86) (48,9) (48,30) (48,61) (48,82) (59,2) (59,37) (59,54) (59,89) (61,9) (61,30) (61,61) (61,82) (62,16) (62,23) (62,68) (62,75) (66,2) (66,37) (66,54) (66,89) (69,26) (69,65) (73,5) (73,44) (73,47) (73,86) (75,16) (75,23) (75,68) (75,75) (76,19) (76,33) (76,58) (76,72) (82,26) (82,65) (83,2) (83,37) (83,54) (83,89) (87,9) (87,30) (87,61) (87,82) (89,19) (89,33) (89,58) (89,72) (90,5) (90,44) (90,47) (90,86)
2 y2 = x3 + 7x + 5 114 (3,12) (3,40) (3,51) (3,79) (5,16) (5,23) (5,68) (5,75) (6,9) (6,30) (6,61) (6,82) (10,16) (10,23) (10,68) (10,75) (12,19) (12,33) (12,58) (12,72) (19,9) (19,30) (19,61) (19,82) (24,16) (24,23) (24,68) (24,75) (27,26) (27,65) (31,16) (31,23) (31,68) (31,75) (34,12) (34,40) (34,51) (34,79) (38,19) (38,33) (38,58) (38,72) (40,26) (40,65) (41,12) (41,40) (41,51) (41,79) (45,9) (45,30) (45,61) (45,82) (47,12) (47,40) (47,51) (47,79) (48,2) (48,37) (48,54) (48,89) (54,12) (54,40) (54,51) (54,79) (55,12) (55,40) (55,51) (55,79) (61,2) (61,37) (61,54) (61,89) (62,16) (62,23) (62,68) (62,75) (66,26) (66,65) (68,12) (68,40) (68,51) (68,79) (73,12) (73,40) (73,51) (73,79) (75,16) (75,23) (75,68) (75,75) (76,16) (76,23) (76,68) (76,75) (80,12) (80,40) (80,51) (80,79) (83,16) (83,23) (83,68) (83,75) (87,2) (87,37) (87,54) (87,89) (89,16) (89,23) (89,68) (89,75) (90,19) (90,33) (90,58) (90,72)
3 y2 = x3 + 7x + 47 114 (3,2) (3,37) (3,54) (3,89) (5,5) (5,44) (5,47) (5,86) (10,5) (10,44) (10,47) (10,86) (12,26) (12,65) (17,16) (17,23) (17,68) (17,75) (20,19) (20,33) (20,58) (20,72) (24,5) (24,44) (24,47) (24,86) (27,9) (27,30) (27,61) (27,82) (31,5) (31,44) (31,47) (31,86) (33,19) (33,33) (33,58) (33,72) (34,2) (34,37) (34,54) (34,89) (38,26) (38,65) (40,9) (40,30) (40,61) (40,82) (41,2) (41,37) (41,54) (41,89) (47,2) (47,37) (47,54) (47,89) (54,2) (54,37) (54,54) (54,89) (55,2) (55,37) (55,54) (55,89) (59,19) (59,33) (59,58) (59,72) (62,5) (62,44) (62,47) (62,86) (66,9) (66,30) (66,61) (66,82) (68,2) (68,37) (68,54) (68,89) (69,16) (69,23) (69,68) (69,75) (73,2) (73,37) (73,54) (73,89) (75,5) (75,44) (75,47) (75,86) (76,5) (76,44) (76,47) (76,86) (80,2) (80,37) (80,54) (80,89) (82,16) (82,23) (82,68) (82,75) (83,5) (83,44) (83,47) (83,86) (89,5) (89,44) (89,47) (89,86) (90,26) (90,65)
4 y2 = x3 + 63x + 47 114 (3,9) (3,30) (3,61) (3,82) (6,2) (6,37) (6,54) (6,89) (10,26) (10,65) (12,16) (12,23) (12,68) (12,75) (17,5) (17,44) (17,47) (17,86) (19,2) (19,37) (19,54) (19,89) (20,5) (20,44) (20,47) (20,86) (24,2) (24,37) (24,54) (24,89) (33,5) (33,44) (33,47) (33,86) (34,19) (34,33) (34,58) (34,72) (38,16) (38,23) (38,68) (38,75) (41,5) (41,44) (41,47) (41,86) (45,2) (45,37) (45,54) (45,89) (47,19) (47,33) (47,58) (47,72) (48,2) (48,37) (48,54) (48,89) (54,5) (54,44) (54,47) (54,86) (55,9) (55,30) (55,61) (55,82) (59,5) (59,44) (59,47) (59,86) (61,2) (61,37) (61,54) (61,89) (62,26) (62,65) (68,9) (68,30) (68,61) (68,82) (69,5) (69,44) (69,47) (69,86) (73,19) (73,33) (73,58) (73,72) (75,26) (75,65) (76,2) (76,37) (76,54) (76,89) (80,5) (80,44) (80,47) (80,86) (82,5) (82,44) (82,47) (82,86) (87,2) (87,37) (87,54) (87,89) (89,2) (89,37) (89,54) (89,89) (90,16) (90,23) (90,68) (90,75)
5 y2 = x3 + 21x + 5 114 (3,2) (3,37) (3,54) (3,89) (5,12) (5,40) (5,51) (5,79) (6,16) (6,23) (6,68) (6,75) (12,16) (12,23) (12,68) (12,75) (17,19) (17,33) (17,58) (17,72) (19,16) (19,23) (19,68) (19,75) (20,12) (20,40) (20,51) (20,79) (27,12) (27,40) (27,51) (27,79) (31,12) (31,40) (31,51) (31,79) (33,12) (33,40) (33,51) (33,79) (34,16) (34,23) (34,68) (34,75) (38,16) (38,23) (38,68) (38,75) (40,12) (40,40) (40,51) (40,79) (41,9) (41,30) (41,61) (41,82) (45,16) (45,23) (45,68) (45,75) (47,16) (47,23) (47,68) (47,75) (48,26) (48,65) (54,9) (54,30) (54,61) (54,82) (55,2) (55,37) (55,54) (55,89) (59,12) (59,40) (59,51) (59,79) (61,26) (61,65) (66,12) (66,40) (66,51) (66,79) (68,2) (68,37) (68,54) (68,89) (69,19) (69,33) (69,58) (69,72) (73,16) (73,23) (73,68) (73,75) (80,9) (80,30) (80,61) (80,82) (82,19) (82,33) (82,58) (82,72) (83,12) (83,40) (83,51) (83,79) (87,26) (87,65) (90,16) (90,23) (90,68) (90,75)
6 y2 = x3 + 63x + 5 114 (3,26) (3,65) (5,9) (5,30) (5,61) (5,82) (6,12) (6,40) (6,51) (6,79) (10,19) (10,33) (10,58) (10,72) (17,16) (17,23) (17,68) (17,75) (19,12) (19,40) (19,51) (19,79) (20,16) (20,23) (20,68) (20,75) (24,12) (24,40) (24,51) (24,79) (27,2) (27,37) (27,54) (27,89) (31,9) (31,30) (31,61) (31,82) (33,16) (33,23) (33,68) (33,75) (40,2) (40,37) (40,54) (40,89) (41,16) (41,23) (41,68) (41,75) (45,12) (45,40) (45,51) (45,79) (48,12) (48,40) (48,51) (48,79) (54,16) (54,23) (54,68) (54,75) (55,26) (55,65) (59,16) (59,23) (59,68) (59,75) (61,12) (61,40) (61,51) (61,79) (62,19) (62,33) (62,58) (62,72) (66,2) (66,37) (66,54) (66,89) (68,26) (68,65) (69,16) (69,23) (69,68) (69,75) (75,19) (75,33) (75,58) (75,72) (76,12) (76,40) (76,51) (76,79) (80,16) (80,23) (80,68) (80,75) (82,16) (82,23) (82,68) (82,75) (83,9) (83,30) (83,61) (83,82) (87,12) (87,40) (87,51) (87,79) (89,12) (89,40) (89,51) (89,79)